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Out-of-hospital cardiac arrest (OHCA) is a significant 
public health problem, killing an estimated 300 000 peo-

ple in North America annually.1 The probability of survival 
after cardiac arrest decreases up to 10% with each minute of 
delay between collapse and treatment.2,3 Only 5% to 10% of 
patients who suffer OHCA survive to hospital discharge.1,4 
Cardiopulmonary resuscitation (CPR) including quality chest 
compressions and early defibrillation can improve chances 
of survival for victims of OHCA. Patients suffering a wit-
nessed cardiac arrest with a shockable rhythm who receive 
prompt CPR and defibrillation have markedly improved sur-
vival rates.5–7 Public access defibrillation programs that deploy 
automated external defibrillators (AEDs) in public settings are 
feasible and have been associated with a doubling in survival 
from OHCA.8–10 However, in the real world setting, AEDs are 
used before the arrival of emergency medical services (EMS) 
in <3% of OHCAs.4 Effective use of an AED in the event of a 

cardiac arrest emergency requires that (1) an AED is in close 
proximity to the location of the cardiac arrest, (2) lay respond-
ers are aware of the location of the AED, and (3) lay respond-
ers are willing and able to retrieve and use the AED on the 
cardiac arrest victim. This investigation focuses on optimizing 
the first requirement.
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Current guidelines suggest that areas associated with the 
highest risk of cardiac arrest should be targeted for AED 
deployment.8 However, the method of identifying these cardiac 
arrest “hot spots” to optimize AED deployment in any given 
community is not clear. Throughout this article, we will refer 
to a cardiac arrest hot spot as a location with the occurrence 
of ≥1 historical cardiac arrests (over the 4.5-year time interval 
of the project) with no registered AED within a 100-m radius.

Background—Geospatial methods using mathematical optimization to identify clusters of cardiac arrests and prioritize 
public locations for defibrillator deployment have not been studied. Our objective was to develop such a method and test 
its performance against a population-guided approach.

Methods and Results—All public location cardiac arrests in Toronto, Ontario, Canada, from December 16, 2005, to July 
15, 2010, and all automated external defibrillator (AED) locations registered with Toronto Emergency Medical Services 
as of September 2009 were plotted geographically. Current AED coverage was quantified by determining the number of 
cardiac arrests occurring within 100 m of a registered AED. Clusters of cardiac arrests without a registered AED within 
100 m were identified. With the use of mathematical optimization techniques, cardiac arrest coverage improvements were 
computed and shown to be superior to results from a population-guided deployment method. There were 1310 eligible 
public location cardiac arrests and 1669 registered AEDs. Of the eligible cardiac arrests, 304 were within 100 m of at least 
1 registered AED (23% coverage). The average distance from a cardiac arrest to the closest AED was 281 m. With AEDs 
deployed in the top 30 locations, an additional 112 historical cardiac arrests would be covered (32% total coverage), and 
the average distance to the closest AED would be 262 m.

Conclusions—Geographic clusters of cardiac arrests can be easily identified and prioritized with the use of mathematical 
modeling. Optimized AED deployment can increase cardiac arrest coverage and decrease the distance to the closest AED. 
Mathematical modeling can augment public AED deployment programs.   (Circulation. 2013;127:1801-1809.)
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Several studies have attempted to identify high-risk 
locations and building types for cardiac arrest.11–17 These 
approaches have consistently identified facilities such as 
transportation hubs and large athletic venues as high risk, in 
which case it is thought that high population density drives the 
incidence of cardiac arrest upward. However, once the obvi-
ous choices for AED placement are identified and addressed, 
the challenge becomes one of deploying AEDs throughout 
the rest of the city in an efficient manner that maximizes cov-
erage. For example, for a building-type category that has a 
high incidence of cardiac arrest but whose many constituent 
facilities are geographically dispersed, it may be prohibitively 
expensive to place an AED in each building in that category.18 
On the other hand, buildings in close geographic proximity 
may each belong to building categories with low cardiac arrest 
incidence but as a group may have above average cardiac arrest 
incidence. A pure building-type strategy would miss such a 
geographic hot spot. Furthermore, many cardiac arrests occur 
outside in a public area or on the street; building-type analy-
ses are typically unable to differentiate between different out-
door areas. Finally, the generalizability of AED deployment 
strategies based on building-type information may be limited 
because of the heterogeneity of population demographics, 
local culture, and infrastructure from city to city.

In this article, we present a mathematical optimization 
methodology based on a well-established and previously 
validated optimization model for facility location19 to iden-
tify geographic hot spots of cardiac arrest and prioritize them 
for public access defibrillator deployment. We also develop 
a population-guided AED deployment method for compari-
son. We present our results specific to the City of Toronto as 
an example of our methodology, which could be applied to 
other cities with available historical cardiac arrest data. The 
specific objectives of this study are (1) to quantify the level of 
coverage of historical cardiac arrests provided by registered 
public access defibrillators in Toronto, (2) to compare opti-
mization and population-guided AED deployment methods,  
(3) to identify underserved cardiac arrest hot spots that may 
be target areas for future AED deployment, and (4) to quantify 
the improvement potential through geographic optimization 
of AED locations with the use of our optimization model.

Methods
Study Setting
Toronto has a population of ≈2.5 million, has a population density 
of 3972.4 people per square kilometer, and covers 630.18 km2 of 
land.20 The city is served primarily by a single EMS, but units from 
other bordering EMS services may respond to emergencies if they 
are closer. There is a tiered response to emergency calls, with the 
fire department and multiple EMS units often deployed to a single 
emergency call.

Study Design
We conducted a retrospective observational study of consecutive 
EMS-attended cardiac arrest episodes occurring within the boundar-
ies of the City of Toronto, Ontario, Canada.

Cardiac Arrest Episode Selection
We considered all atraumatic cardiac arrest episodes occurring within 
the City of Toronto from December 16, 2005, to July 15, 2010, for 

inclusion in our study. We identified eligible episodes by the epi-
sode location postal code. Street address or latitude/longitude was 
used when a postal code was unavailable. Atraumatic cardiac arrest 
episodes were included regardless of initial cardiac arrest rhythm or 
presumed cause. We excluded those episodes that occurred in resi-
dential, nursing home, or healthcare facility settings or where it was 
not possible to determine with certainty the exact location of the car-
diac arrest.

Data Sources

Cardiac Arrest Data
The Resuscitation Outcomes Consortium is a North American consor-
tium of 11 coordinating centers and >200 EMS to enable multicenter ran-
domized controlled trials in cardiac arrest and life-threatening trauma. 
The Resuscitation Outcomes Consortium Epistry–Cardiac Arrest data-
base is a large registry of consecutive OHCAs attended by Resuscitation 
Outcomes Consortium EMS providers.21 For this study, we used car-
diac arrest cases from the local Epistry database occurring in the City 
of Toronto. Each entry in the database includes geographic information 
regarding the location of the cardiac arrest derived from dispatch data 
and the pickup location indicated by paramedics on the ambulance call 
report. A specific field in the database identifies whether or not a car-
diac arrest occurred in a public setting. Patient demographics and clini-
cal information regarding the characteristics of the cardiac arrest and 
treatment provided are also recorded for each episode. Approval for this 
study was obtained from our institutional research ethics board.

Locations of Registered AEDs
We obtained a list of 1669 registered AEDs in Toronto as of 
September 2009 from Toronto EMS. Toronto EMS dispatch sought 
to register all AEDs placed by several regional public access defi-
brillation programs and also advertised on its Web site for private 
owners of AEDs in the public setting to register their AEDs. The 
registration of public location AEDs is voluntary in Ontario. AEDs 
are registered in this database with the exact mailing address of the 
building in which it was placed and a contact telephone number. 
These data are integrated into a computer-assisted dispatch system 
used by the 911 operator.

Potential Locations for New AEDs
We used data from the 2009 City of Toronto Employment Survey 
(http://www.toronto.ca/demographics/surveys.htm, accessed August 
22, 2011) obtained from the City Planning Division of the City of 
Toronto to determine potential locations for AEDs. This annual sur-
vey seeks to identify every business establishment in the City of 
Toronto. Data from the survey are gathered each summer by trained 
surveyors who canvas the entire city in person and conduct face-to-
face structured interviews with representatives from >75 000 business 
establishments. In 2009, these businesses resided in 25 851 unique 
buildings in the City of Toronto. The survey collects location data on 
each of the buildings in which a surveyed business resides, including 
the number of floors within the building and number of businesses 
in each building. We used the geographic data corresponding to the 
unique buildings in this database to determine potential sites for pub-
lic location AEDs.

Daytime Census Population
The City Planning Division of the City of Toronto used data from the 
2006 Canadian Census to provide us with an estimate of the daytime 
population within each census tract. The daytime population for each 
census tract was calculated as the census tract resident population 
minus the used labor force (number of people in the census tract who 
are used) plus the place of work population (number of people who 
work in the census tract).22

Analyses

Geographic Data Conversion
Geographic data for all registered AEDs (in the form of street ad-
dresses), buildings in the City of Toronto (latitude/longitude 
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coordinates), and historical cardiac arrest cases (mix of addresses and 
latitudes/longitudes) were converted into the Universal Transverse 
Mercator format. The Universal Transverse Mercator system is 
similar to the well-known latitude/longitude system in its ability to 
uniquely identify a point on the earth’s surface. One of the advan-
tages of the Universal Transverse Mercator system is that it is based 
in meters rather than degrees and minutes, facilitating the calculation 
of distances. Once the data were converted into Universal Transverse 
Mercator coordinates, we plotted all data points in ArcGIS (Esri, 
Redlands, CA), a geographic information system software program. 
The distance from each cardiac arrest location to each current and 
potential AED location was calculated with the use of the Euclidean 
(ie, straight line) metric.

Analysis 1: Current Cardiac Arrest Coverage Level
Once all of the pairwise cardiac arrest–AED distances were calcu-
lated, we determined how many historical cardiac arrests occurred 
within 100 m of a registered AED. The 100-m coverage radius was 
chosen on the basis of the approximate maximum distance an AED 
could be transported by a bystander in a 1.5-minute walk as outlined 
in an American Heart Association recommendation for community 
AED placement.8 This analysis addresses the first objective of quan-
tifying the level of cardiac arrest coverage provided by currently reg-
istered AEDs.

Analysis 2: Comparing Optimization and Population-
Guided AED Placement Strategies
To address the second objective of this article, we developed an 
optimization model based on the Maximal Covering Location 
Problem.19 Details are provided in the online-only Data Supplement. 
Our model sought to identify a set of locations where placing AEDs 
would maximize the number of additional historical cardiac arrests 
that could be covered within a 100-m radius, above and beyond 
the number covered by existing registered AEDs. In our model, we 
assumed that existing registered AEDs could not be moved. The 
decision variables were the locations of the additional AEDs to be 
deployed, to be chosen from our database of buildings in Toronto. 
The model had 1 adjustable parameter, N, that specified the maximum 
number of locations where additional AEDs could be deployed. 
Solving the optimization problem with the parameter N set to 10, for 
example, would result in the identification of the top 10 cardiac arrest 
locations where additional AEDs would cover the most cardiac arrests. 
We ran the optimization model for values of N of 20, 40, 60, 80, and 
100. A separate optimization problem was solved for each value of N. 
We used the AMPL (AMPL Optimization LLC, Albuquerque, NM) 
software language to code the algebraic formulation of the model, 
and we used the CPLEX (IBM Corp, Armonk, NY) solver to solve 
the corresponding optimization problem. The problems each took 
<15 seconds to solve with the use of a desktop computer with 6 GB 
of RAM and a quad-core 2.67-GHz processor.

We developed a population-guided AED placement method as an 
alternative for comparison with the optimization method. A popula-
tion-guided model was thought to reflect a “common sense” deploy-
ment approach that is less complex and could be conducted without 
historical cardiac arrest data or an optimization model. We distrib-
uted the daytime population in each census tract among the build-
ings (from the Toronto Employment Survey database) situated in 
that census tract, proportional to the number of floors in each build-
ing. For each building, we took the fraction of the number of floors 
it had relative to the total number of floors in all buildings in the 
census tract and assigned that fraction of the daytime population in 
the census tract to that building. Then all buildings in Toronto were 
rank ordered on the basis of the assigned population, and the top N 
values were chosen as locations for AED placement. The values of N 
chosen were 20, 40, 60, 80, and 100. We also conducted a sensitivity 
analysis of the aforementioned approach by implementing a variant 
with the use of the number of businesses in each building, instead of 
the number of floors, to proportionally distribute population in each 
census tract.

To test the optimization method versus the population method, we 
applied the McNemar test for paired proportions.23 We used 10-fold 

cross-validation,24,25 in which in each scenario, 90% of the cardiac 
arrests (ie, the training set) were used by the optimization model 
to determine the N optimal AED locations, which were then used 
to measure the coverage provided to the remaining 10% of cardiac 
arrests (ie, the testing set). The testing sets were disjointed across the 
10 scenarios. We solved the optimization model for each value of N 10 
times, 1 for each scenario, and summed the coverage results over all 
testing data sets. We evaluated the population-guided method on the 
same 10 testing sets. The combined results were used to construct a 
2-by-2 matched-pairs table for each value of N, where the diagonals 
counted the concordant pairs (the number of cardiac arrests covered 
by both optimization and population methods and the number covered 
by neither), and the off-diagonals counted the discordant pairs (the 
number covered by only 1 of the 2 methods). The McNemar test was 
performed on the 2-by-2 table for each value of N, and an associated P 
value was calculated. In addition, 95% confidence intervals for paired 
proportions, centered at zero, were constructed for all values of N.

Analysis 3: Optimization of AED Placement
To address the third and fourth objectives, we applied the optimiza-
tion model to the full cardiac arrest data set for each value of N from 0 
to the maximum number needed to cover all historical cardiac arrests.

Results
During this time period, there were 15 786 atraumatic cardiac 
arrests recorded in the greater Toronto area. After applying 
the exclusion criteria, there were 1310 public location cardiac 
arrests that occurred within the City of Toronto during the 
time period considered (Figure 1). Examples of public loca-
tions were outdoor settings, schools, public transportation 
venues, and commercial establishments. Demographics and 
cardiac arrest episode characteristics for the included cardiac 
arrests can be seen in Table 1.

Analysis 1: Current Cardiac Arrest Coverage Level
Of the 1310 public cardiac arrests considered, 304 of them 
occurred within 100 m of one of the 1669 preexisting reg-
istered public AEDs, which corresponds to a coverage per-
centage of 23% (304/1310). The average distance from a 
historical cardiac arrest to the closest AED was 281 m. We 
also conducted a post hoc analysis of the data stratified by 
whether the cardiac arrests occurred downtown or not, moti-
vated by the observation that cardiac arrest density appeared 
to be significantly different between the areas when visual-
ized with ArcGIS. Downtown was defined as the collection 
of census tracts that matched the downtown area defined by 
the City of Toronto26 and covers 16.45 km2 of land. There 
were 266 cardiac arrests that occurred downtown and 1044 
cardiac arrests that occurred outside of downtown. The study 
data spanned 1688 days, and with the assumption of 365 days 
per year, the downtown cardiac arrest density was 3.5 cardiac 
arrests per square kilometer per year. Outside of downtown, 
the cardiac arrest density was 0.4 cardiac arrests per square 
kilometer per year. The results summarized in Table 2 show 
that the percentage of cardiac arrests covered in downtown 
was almost 3 times higher than outside of downtown and that 
the mean distance to the closest AED in downtown was ≈60% 
lower. The population of Toronto was 2 503 281 in 2006, 
which translates to 11.3 public location cardiac arrests per 
100 000 people per year.

Figure 2 overlays historical cardiac arrests and existing 
AEDs on a map of the City of Toronto. The shaded pink 
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region corresponds to downtown. Although there are many 
registered AEDs spread throughout Toronto, the vast majority 
have not historically been located within 100 m of a cardiac 
arrest. Figure 3 highlights the downtown area.

Analysis 2: Comparing Optimization and 
Population-Guided AED Placement Strategies
After the 304 cardiac arrests that were covered by the existing 
AEDs were removed, 1006 remained. Each of the 10 scenarios 
comprised a testing set with 100 cardiac arrests and a training 
set with the remaining 906. Table 3 displays the 2-by-2 table 
with the paired proportions for the case N=100. Similar tables 
were constructed for the other values of N. A P value <0.0001 

(χ2 statistic was 32.93 on 1 degree of freedom) was obtained 
from the McNemar test for N=100.

Figure 4 compares the coverage provided by the optimiza-
tion method with the population-guided method. The midpoint 
of a confidence interval indicates the number of additional car-
diac arrests covered with the use of the optimization method 
compared with the population method. The error bars repre-
sent 95% confidence intervals around the midpoint. Because 
we are using a paired difference in proportion centered at zero, 
the confidence intervals indicate statistical significance at the 
95% level (P values were all <0.0001).

The sensitivity analysis showed that using the number of busi-
nesses in each building to proportionally distribute the daytime 
population in each census tract, instead of the number of floors, 
produced almost identical results. In particular, the optimization 
method covered more cardiac arrests than the business-based 
population-guided method across all levels of N.

Analysis 3: Optimization of AED Placement
Figure 5 shows the results from running the optimization 
model on the full set of cardiac arrest data, varying the maxi-
mum number of locations for additional AED deployment. 
For example, placing AEDs in the top 30 locations resulted 
in coverage of an additional 112 historical cardiac arrests, 
corresponding to an overall coverage percentage of 32% 
(416/1310; a 9% improvement over the baseline calculated in 
analysis 1). In this case, the average distance from a cardiac 
arrest to the closest AED decreased to 262 m. Reducing the 
distance a bystander needs to travel by ≈20 m, or up to 40 
m round trip, has the potential to save close to half a minute 
in response time. Each cardiac arrest hot spot in the top 30 
was composed of at least 3 cardiac arrests. After AEDs were 
placed in the top 111 locations, each subsequent AED placed 
covered 1 historical cardiac arrest.

Figure 6 illustrates an example output of the optimization, 
identifying the top 30 locations for additional AED 
deployment.

Discussion
Previous studies have indicated that strategic initiatives are 
needed to target high-incidence areas of cardiac arrest and 
that without a coordinated approach to AED deployment, 
paradoxical placement could result, with many AEDs 
placed in areas of low cardiac arrest incidence.14 This study 
demonstrates that strategic placement of AEDs in a limited 
number of sites may result in an increase in cardiac arrest 
coverage in a large urban center. Such an increase will 
correspond to a decrease in the average distance from a cardiac 
arrest to the nearest AED and may ultimately result in faster 
response times and improved outcomes. According to both 
the European Resuscitation Council27 and American Heart 
Association8 recommendations for AED deployment (placing 
AEDs in areas with 1 cardiac arrest every 2 and 5 years, 
respectively), the top 30 cardiac arrest hot spots identified 
would be locations recommended for AED placement. 
The results shown in Table 2 highlight the epidemiological 
paradox of AED efficiency in dense, downtown settings 
versus more rural settings outside downtown. In particular, 
almost half of all downtown cardiac arrests were covered by 

Atrauma�c cardiac arrests in 
Greater Toronto Area

15 786 

Public
1754

Within City of 
Toronto

1310

Outside City of 
Toronto 

444

Private
13 916

Unknown
116

Figure 1. Criteria for cardiac arrest episode inclusion/exclusion.

Table 1.  Demographic Characteristics of Included Public 
Location Cardiac Arrests

Characteristic
All Included Cardiac  

Arrests (n=1310)

Average age (±SD), y 59.4±17.6

  Male 59.1±17.0

  Female 60.8±19.9

Male sex, n (%)* 1052 (80.3)

Witnessed by bystander, n (%)* 582 (44.4)

Received bystander CPR, n (%)* 499 (38.1)

Received bystander AED, n (%)* 70 (5.3)

Average interval between 911 call and EMS  
vehicle arrival, min, median (IQR)*

5.7 (2.4)

Initial heart rhythm, n (%)*†

  Shockable 421 (32.1)

  Not shockable 843 (64.4)

Survival to discharge* 160 (12.2)

AED indicates automated external defibrillator; CPR, cardiopulmonary 
resuscitation; EMS, emergency medical services; and IQR, interquartile range.

*Number of missing/not noted cases: male sex (17), witnessed by bystander 
(13), received bystander CPR (32), received bystander AED (76), average interval 
between 911 call and EMS vehicle arrival (21), initial heart rhythm (46), survival 
to discharge (4).

†Shockable includes ventricular tachycardia, ventricular fibrillation, and 
patients listed as shockable. Not shockable includes pulseless electrical 
activity, asystole, patients listed as not shockable, and patients in whom the 
initial rhythm was not obtained because resuscitation was stopped before 
rhythm analysis.
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an existing AED, whereas only 17% of cardiac arrests outside 
downtown were covered. This drop in coverage contrasts 
sharply with the number of AEDs and cardiac arrests outside 
downtown, which is ≈4 times more than the number of AEDs 
and cardiac arrests inside downtown.

Our optimization model should be viewed as a decision-
support tool to help prioritize placement of AEDs; make effi-
cient use of public, donor, or private funds directed toward 
public access defibrillation programs; and potentially maxi-
mize survival on the basis of geographic patterns of cardiac 
arrest. Because AEDs are expensive and cannot be placed 
everywhere, our model allows a decision maker to quantify 
the trade-off between the number of AEDs deployed and cov-
erage. Geographic optimization of AED placement should be 
seen as a complementary approach to existing AED deploy-
ment methods. After priority hot spots are identified through 
our optimization model, a detailed study of the buildings in 
the area should be conducted before a decision is made about 
specific locations to place AEDs. Data from other building-
specific analyses may inform these “micro”-level decisions. 
For instance, an important consideration is the hours a 
building is open. The locations identified for potential AED 
deployment in this article tended to have many other buildings 
nearby, either next door or across the street. Therefore, given 
an optimal location identified by our model, it seems likely 
that there would be many candidate locations that would pro-
vide equal coverage, with at least 1 having regular business 
hours. The specific results of where to place the AEDs in the 
City of Toronto to optimize coverage of potential cardiac 
arrests are not meant to be generalizable to other cities; rather, 
it is the optimization methodology itself that we believe can 
be translated and used by other cities to generate customized 

recommendations using their region-specific data and preex-
isting AED deployment patterns.

Our model is based on a well-established, previously 
validated model used to solve the problem of optimally 
locating public facilities.19 Since then, similar models have 
been developed to determine the deployment of preventative 
healthcare facilities28–30 and blood banks,31 as well as for 
EMS applications like ambulance location32 and EMS station 
location problems.33 As opposed to generating a simple 
ranked list of hot spots based on the number of uncovered 
cardiac arrests, the priority locations determined by the 
optimization model will change depending on the choice of 
the parameter N (the number of locations where AEDs may 
be deployed). Because each choice of N results in the solving 
of an independent optimization problem, our model is able 
to properly account for overlap between the radii of nearby 
AEDs and to account for cardiac arrests that are already 
covered by previously deployed AEDs.

Optimization models can also be used to test different 
hypotheses or policies regarding AED deployment. For exam-
ple, the coverage provided by deploying AEDs in all gas sta-
tions in a region to treat cardiac arrests that occur on the street 
can be explored computationally. Potential partnerships with 
businesses such as coffee shops or restaurants to deploy AEDs 
in their retail facilities could be evaluated computationally 
in terms of coverage provided by their network of locations. 
Finally, a similar model could be used to “right-size” the num-
ber of public access defibrillators needed in a given region. 
Decision makers interested in achieving a particular service 
or coverage level (eg, 95% of historical cardiac arrests must 
be within a 100-m distance or a 2-minute travel time from a 
public access defibrillator) provided by public AEDs in their 

Table 2.  Baseline Cardiac Arrest Coverage Provided By Existing Registered AEDs in Toronto

Area Total No. of CAs Total No. of AEDs Total No. of CAs Covered Coverage, % Mean Distance to Closest AED, m*

Downtown 266 303 130 49 129±103

Outside downtown 1044 1366 174 17 319±237

Overall 1310 1669 304 23 281±229

AED indicates automated external defibrillator; and CA, cardiac arrest.
*Plus-minus values are mean±SD.

Figure 2. Geographic distribution of 
public location cardiac arrests from 
December 16, 2005, to July 15, 2010, 
and registered automated external 
defibrillators (AEDs) as of September 
2009.
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region could leverage a mathematical model similar to the one 
used in this article to calculate the number and locations of the 
AEDs required.

Deploying public AEDs in accordance with population den-
sity is a very intuitive and appealing idea but is challenging to 
implement in practice. Population data are often captured only 
at the census tract level, which lacks the geographic granu-
larity needed for public AED deployment decisions. Detailed 
building data similar to those we collected in this article may 
not be easy to obtain. Finally, obtaining daytime population 
data may be a challenge because census information is based 
on residential addresses. Given the challenges in obtaining 
granular daytime population data and the better performance 
of the optimization method over the population-guided meth-
ods demonstrated in this article, the effort to develop popula-
tion cardiac arrest databases for use in optimization-guided 
health interventions may be justified.

The analyses in this article were conducted from a geospatial 
point of view. Physical obstacles like doors, walls, corners, and 
multiple floors were not explicitly modeled. Our analyses are 
meant to provide a high-level view of geographies or regions 
where there are higher densities of cardiac arrests that are 
underserved by existing registered AEDs and that therefore 
may be appropriate places to focus effort in placing future 
AEDs. By measuring coverage of historical cardiac arrests 
and identifying historical hot spots as potential geographies 
for future AED deployment, we implicitly assume that the past 
distribution of cardiac arrests is representative of the future. It 
has been shown in at least 1 city that the incidence of cardiac 
arrest within census tracts is relatively stable from year to 

year.34 The cross-validation approach taken in this article is 1 
method to account for variability in cardiac arrest locations.

The database of building locations from the City of Toronto 
was used as our “grid” on which to identify cardiac arrest hot 
spots, but not all of those buildings would be an appropriate 
location in which to place an AED; actual deployment will 
require on-site evaluation to consider architectural details and 
building function. Furthermore, many buildings will require 
multiple AEDs to service all of the potential need (eg, multi-
story buildings). However, this database provides a convenient 
mechanism to evaluate a diverse set of geographic points dis-
persed across the city and is generally aligned with the dis-
tribution of population density. Therefore, it is reasonable to 
assume that potential locations for new AEDs will be in close 
proximity to buildings in this database.

It is important to recognize that our concept of “cover-
age” and actual AED usage are completely separate issues. 
Our claim is not that an AED within 100 m will definitely 
be used. Rather, the coverage radius is used to quantify 
how many AEDs have a chance of being used. Our focus is 
purely on identifying geographic hot spots and determining 

Figure 3. Public location cardiac arrests 
and registered automated external 
defibrillators (AEDs) in and around 
downtown Toronto.

Table 3.  Coverage of Cardiac Arrests According to 
Optimization (N=100) and Population-Guided Methods

Population-Guided Method

No Yes Total

Optimization method

  No 882 26 908

  Yes 87 5 92

  Total 969 31 1000

Figure 4. Number of additional cardiac arrests that the 
optimization method covers over the population-guided method. 
AED indicates automated external defibrillator.
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the existence of nearby AEDs; we make no claim on under-
standing actual bystander behavior and the resulting AED 
usage in cardiac arrest situations. Because of the relatively 
short distances bystanders are expected to travel to retrieve a 
nearby AED, we believe that the straight line metric provided 
a reasonable approximation to distance traveled on foot. 
Interventions that increase bystander recruitment to a car-
diac emergency or bystander awareness of AED locations at 
the time of a cardiac arrest have the potential to increase the 
coverage radius of an AED. For example, trained bystanders 
could act as an extension of EMS if they are alerted through 
a cellular telephone of a nearby cardiac arrest and respond 
accordingly. Instead of round-trip travel by a bystander 
close to the victim, a targeted responder can make a 1-way 
trip with an AED, cutting the travel time in half or, equiva-
lently, doubling the coverage radius.35 A faster response time 
is associated with an increase in the likelihood of a shock-
able initial rhythm. Figure 5 shows that as more AEDs are 
added to the system, the incremental value of each addition 
decreases. These results highlight the need to both optimize 
AED deployment in a large urban center and integrate the 
AED network with EMS and lay responders.

Registration of AEDs is not mandatory in Ontario and many 
other jurisdictions around the world. The list of registered 
AEDs obtained from Toronto EMS may not capture all pub-
licly accessible AEDs in Toronto. However, we believe that 
this is only a mild limitation. A 911 operator would not be able 
to direct a caller to an unregistered AED, and therefore the 
likelihood that it would be used in a cardiac arrest is probably 
low, even if it is nearby. Unregistered AEDs tend to be pur-
chased corporately and remain under lock and key as part of 
the institutional response to an internal emergency. Thus, we 
believe that using our list of registered AEDs is a reasonably 
accurate way to determine coverage of cardiac arrest cases 
that are reported to 911. Another limitation of this data source 
is that it does not include the date that the AED was installed 
(or provide any guarantee that the AED is still present and 
functional). The result is that the calculations of cardiac arrest 
coverage will be overestimated. However, our focus has been 
on the change in coverage and change in distance to the clos-
est AED relative to a baseline, which means that although 
absolute values will be overestimated, relative values should 
be fairly accurate. In any case, this data limitation reinforces 
the need to develop local and national registries of publicly 

Figure 5. Increase in cardiac arrest 
coverage and decrease in average 
distance between cardiac arrests and the 
closest automated external defibrillator 
(AED) as a function of increasing AED 
deployment.

Figure 6. Locations of top 30 uncovered 
cardiac arrest hot spots in Toronto. AED 
indicates automated external defibrillator.
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accessible AEDs and to involve public health organizations, 
EMS, and the public itself in helping to register AEDs.

Finally, defibrillation is only 1 component of the optimal 
bystander response to cardiac arrest. It may be argued that 
good-quality bystander CPR is a more important component 
of bystander resuscitation given that it is indicated for nearly 
all atraumatic cardiac arrest victims; an AED is effective for 
the minority of OHCA patients who have a shockable cardiac 
rhythm at any time. Any analysis that identifies cardiac arrest 
clusters should not only guide the rational placement of AEDs 
but also direct focused efforts to increase bystander CPR 
through awareness campaigns, training, or the establishment 
of organized first-responder programs.

Conclusions
A mathematical optimization model can be used to detect geo-
graphic hot spots of cardiac arrest and drive regionally cus-
tomized strategic initiatives aimed at deploying public access 
defibrillators in areas of a city with the highest incidence of 
cardiac arrest. In particular, we demonstrate that an appropri-
ate optimization model can outperform population-guided 
approaches to AED deployment. By targeting appropriate 
areas for AED deployment, coverage of potential cardiac 
arrest sites can be increased, and the distance a lay responder 
needs to travel to retrieve an AED can be decreased. Math-
ematical modeling and optimization methods should be a part 
of a comprehensive, data-driven approach to AED deployment 
in public access defibrillation programs.
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Supplemental Material 
 

Supplemental Methods 
 
The mathematical model we use is shown below.   
 

• 𝑥𝑗 is a binary variable indicating whether cardiac arrest j is covered or not 
• 𝑦𝑖 is a binary variable indicating whether an AED is placed in location i or not 
• 𝑎𝑖𝑖 is a binary data parameter that indicates whether cardiac arrest j is coverable (within 

100 meters) of location i 
• 𝑁 is the number of locations in which AEDs are placed 
• 𝐼 is the number of potential locations in which to place AEDs 
• 𝐽 is the number of cardiac arrests in our dataset 

 
Maximize ∑ 𝑥𝑗

𝐽
𝑗=1  

Subject to ∑ 𝑦𝑖 = 𝑁𝐼
𝑖=1  

   𝑥𝑗 ≤ ∑ 𝑎𝑖𝑖𝑦𝑖𝐼
𝑖=1 , for all 𝑗 = 1, … , 𝐽 

   𝑥𝑗 ∈ {0,1}, for all 𝑗 = 1, … , 𝐽 
  𝑦𝑖 ∈ {0,1}, for all 𝑖 = 1, … , 𝐼 
 
This is a binary optimization model also known as the Maximal Covering Location Problem1. 
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