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Purpose: There is evidence that computed tomography (CT) and positron emission tomography
(PET) imaging metrics are prognostic and predictive in nonsmall cell lung cancer (NSCLC) treatment
outcomes. However, few studies have explored the use of standardized uptake value (SUV)-based
image features of nodal regions as predictive features. The authors investigated and compared the use
of tumor and node image features extracted from the radiotherapy target volumes to predict relapse
in a cohort of NSCLC patients undergoing chemoradiation treatment.
Methods: A prospective cohort of 25 patients with locally advanced NSCLC underwent
4DPET/4DCT imaging for radiation planning. Thirty-seven image features were derived from the
CT-defined volumes and SUVs of the PET image from both the tumor and nodal target regions.
The machine learning methods of logistic regression and repeated stratified five-fold cross-validation
(CV) were used to predict local and overall relapses in 2 yr. The authors used well-known feature
selection methods (Spearman’s rank correlation, recursive feature elimination) within each fold of
CV. Classifiers were ranked on their Matthew’s correlation coefficient (MCC) after CV. Area under
the curve, sensitivity, and specificity values are also presented.
Results: For predicting local relapse, the best classifier found had a mean MCC of 0.07 and was
composed of eight tumor features. For predicting overall relapse, the best classifier found had a mean
MCC of 0.29 and was composed of a single feature: the volume greater than 0.5 times the maximum
SUV (N).
Conclusions: The best classifier for predicting local relapse had only tumor features. In contrast, the
best classifier for predicting overall relapse included a node feature. Overall, the methods showed
that nodes add value in predicting overall relapse but not local relapse. C 2015 American Association
of Physicists in Medicine. [http://dx.doi.org/10.1118/1.4926755]
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1. INTRODUCTION

Positron emission tomography (PET) image features are a
promising avenue to inform clinical management of locally
advanced nonsmall cell lung cancer (NSCLC).1–3 Studies
have shown that 18F-fluorodeoxyglucose (FDG) PET images
contain information that have both prognostic value and
predictive capabilities in assessing response to chemoradiation
treatment (CRT). However, despite the many studies
demonstrating a strong association between PET imaging
features and clinical outcomes,4–15 there has been limited
investigation of PET features associated with nodal disease.

In view of the amount of data and derivative features
available, researchers are exploring machine learning methods
to predict clinical outcomes and response based on image and
nonimage features in a range of tumor sites and treatment
modalities. Dehing-Oberije et al.16 developed a support vector
machine (SVM) classifier for predicting two-year survival of
NSCLC patients based on patient characteristics and present-
ing features of the cancer. Naqa et al.17 used logistic regression
to predict failure probabilities of cervical and head-and-neck
cancer based on FDG-PET/computed tomography (CT) image
features. Their best models for both sites were composed of
two features each. Naqa et al.18 found that using SVM along
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with a nonlinear kernel resulted in superior performance
when the data demonstrated nonlinear behavior for predicting
esophagitis, pneumonitis, and xerostomia endpoints. Vaidya
et al.19 applied logistic regression to predict the failures of
NSCLC patients based on combined FDG-PET/CT features
and found that a two-feature classifier performed the best
through a bootstrapping feature selection algorithm that
analyzed classifiers composed of one to five features. van
Stiphout et al.20 developed a SVM classifier for pathological
complete response of rectal cancer after chemoradiation
therapy based on FDG-PET and clinical features. Zhang
et al.21 used FDG-PET information in a SVM classifier with
17 features to evaluate esophageal tumor response to CRT.

In this paper, we build upon these previous studies by
developing a logistic regression classifier, which uses 4DPET
using FDG and 4DCT image features to predict two-year
local and overall relapses in a cohort of LA-NSCLC patients.
While nodal PET uptake can be a predictor of distant relapse
in head and neck cancers,22 few studies have investigated
its use with machine learning models. We include nodal
4DPET and 4DCT features in our classifiers and explore their
predictive value, which has not been considered previously in
LA-NSCLC. By varying whether the classifiers can choose
nodal features or not, we quantify their predictive value. We
also explore how different combinations of features improve
the predictive capability of our classifier. Similar to other
studies, we use Matthew’s correlation coefficient (MCC)18 to
compare the performance of the different classifiers.

2. METHODS AND MATERIALS
2.A. Data

After institutional research ethics board approval, we iden-
tified a prospective cohort of LA-NSCLC patients undergoing
conventionally fractionated radiation therapy and concurrent
chemotherapy with curative intent. These 32 patients con-
sented to 4DPET/4DCT imaging 2 weeks prior to treatment
and 3 months after completion of therapy. Of the 32 patients
who originally consented to the study, three were rendered
ineligible since the first 4DPET/4DCT scan showed evidence
of metastatic disease prior to treatment. Two patients withdrew
due to toxicity during treatment, and another two died prior
to the post-treatment 4DPET/4DCT scan. The remaining 25
patients who contributed to this study are described in Table I.
All 25 eligible patients were followed for at least 2 yr (or until
death), with a median follow-up of 26 months.

For each patient, we examined two clinical outcomes: local
relapse and overall relapse at 2 yr post-therapy. Local relapse
was defined by first tumor recurrence being in the planning
target volume (PTV). Overall relapse was determined by a
recurrence anywhere, including all locoregional and distant
failures. Twenty percent of all patients had a local relapse
as the first site of disease recurrence and 60% of patients
had a relapse by 2 yr. All patients who died during follow-
up had a documented recurrence before death. The median
progression-free survival was 10.1 months and the overall
survival rate at 2 yr was 60%.

T I. Patient population characteristics for our set of 25 patients. “NOS”
means the histology could not be definitively classified.

Age Median 63 (37–79)

Sex
Male 16 (0.64)
Female 9 (0.36)

Stage
IIA/B 2 (0.08)
IIIA 12 (0.48)
IIIB 11 (0.44)

Histology
Adeno 19 (0.76)
Squamous 4 (0.16)
NSCLC NOS 2 (0.08)

Primary tumor size
Median 37 mm
Mean 42.6 mm

Radiotherapy dose

60 Gy 7 (0.38)
66 Gy 16 (0.64)
70 Gy 1 (0.04)
74 Gy 1 (0.04)

Each patient underwent a planning 4DPET/4DCT scan
(Discovery ST, GE Healthcare, Waukesha, WI). The resolution
of the 4DCT was 0.78× 0.78× 2 mm. The resolution of the
4DPET was 3.9×3.9×2 mm and was interpolated to match the
resolution of the CT dataset. These images were transferred to
our treatment planning system (Pinnacle3, Philips Radiation
Oncology Systems, Madison, WI), where a radiation oncol-
ogist contoured the normal tissues and targets on 4DCT. The
primary tumor and affected nodes were contoured separately,
each consisting of a gross tumor volume (GTV), clinical target
volume (CTV), internal target volume (ITV), and PTV. The
ITV was derived from the union of the CTV drawn on the
inhale and exhale phases of the planning 4DCT dataset. A
region of interest for PET subimage analysis was restricted
to a mask based on both the tumor and nodal ITVs, as shown
in Figure 1.

2.B. Features

PET features were extracted from the masks defined above
on the inhale phase. Standardized uptake value (SUV) data
from the masks were exported to  ( and Statistics
Toolbox Release 2010b, The MathWorks, Inc., Natick,
Massachusetts, United States) and were used to construct
our initial feature set. These features were preprocessed in
order to minimize the effects of large magnitude of any one
feature value on the learning algorithm. For each feature,
we standardized the values by subtracting the mean and
dividing by the variance across all patients.23 Features with
zero variance were removed from the dataset, resulting in
the 37 features per patient shown in Table II. We indicate to
which site a feature belongs with either a superscript T for
tumor (e.g., SUVT

mean) or N for node (e.g., SUVN
mean).

2.C. Predictive Model

We developed a logistic regression classifier that used the
previously defined 4DPET/4DCT features to predict local and
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F. 1. Fused 4DPET/4DCT images of a patient from our study. The purple contour is the tumor mask based on the ITV. The teal contour is the node mask
based on the nodal ITVs.

overall relapses. The logistic function is defined as

f (x)= 1
1+e−(w·x+b)

, (1)

where w and b are the weights, and x is a vector of features for
a given patient. The function f (x) outputs values in the range
[0,1] that represent the probability the patient, as defined
through their x vector, is a member of the positive class,
which, in this paper, is relapse. The LIBLINEAR library24 for
 was used to train and validate the logistic regression
classifier. We used a threshold of 0.5 to force a binary output.

2.D. Model comparison and evaluation

We used five-fold stratified cross-validation (CV) to
evaluate the results. The data were split into five disjoint sets.
One set was held out as the test set and the remaining four
were used as the training set. This ensured that our classifier

T II. The set of 37 features for each patient. Each feature listed in the
table exists for both the tumor and node regions unless otherwise specified.
The intensity volume histogram (IVH) features were defined relative to
SUVpeak because SUVmax is vulnerable to large outliers.

Feature Definition

SUVmean Mean SUV
SUVmedian Median SUV
SUVpeak 95th percentile of the SUV distribution
SUVmax Max SUV
IVHx Volume with a SUV ≥ xSUVpeak, where

x ∈ [0.25,0.5, . . .,2.25] for the tumor and
x ∈ [0.25,0.5, . . .,3.5] for the nodes.

VolPET Volume of the PET mask
VolCT Volume of the CT-based GTV on the exhale phase
Vol0.5max Volume with a SUV ≥ 0.5SUVmax

was not evaluated on the data on which it was trained. The
test sets were forced to hold at least one patient from each
class and each test set had a similar distribution of data points
from the positive (relapse) and negative (relapse-free) classes.
For every classifier (i.e., different combination of features),
we performed CV with 100 repetitions.

We evaluated the performance of each classifier on
Matthew’s correlation coefficient (MCC)25 over the 100
repetitions. MCC is defined as

TP×TN−FP×FN(TP+FP)(TP+FN)(TN+FP)(TN+FN) , (2)

where TP is the number of true positives, FP is the number of
false positives, TN is the number of true negatives, and FN is
the number of false negatives. A MCC of+1 indicates a perfect
prediction, 0 is equivalent to a fair coin toss, and −1 indicates
a prediction that is opposite from the true class. A classifier
that naively predicts the majority class for all patients will
also have a MCC value of 0. Thus, MCC provides a metric
by which to judge the classifiers that is desensitized to class
imbalance.

We repeated the 100 repetitions of CV with the number of
features held constant to f , for f = 1,. . .,8. We investigated
two different methods to select features within each fold. The
first method used the Spearman’s rank correlation coefficient.
For each fold of training data, the univariate Spearman’s
correlation between each feature and the label was calculated.
Then, the top f features with the highest correlation were
selected to be included in the classifier. The second method
used recursive feature elimination (RFE).26 Here, a linear
SVM was trained on the training fold and we removed the
feature with the smallest weight coefficient. We retrained the
linear SVM using the trimmed feature set and again removed
the feature with the smallest weight. We repeated this until
we were left with the top f features with the highest weight.

Medical Physics, Vol. 42, No. 8, August 2015



4730 Li et al.: The value of using nodal information in predicting lung cancer relapse using 4DPET/4DCT 4730

T III. Feature composition for best classifiers.

Best feature set Method Correlated features removed?

Local relapse T IVHT
0.75, IVHT

1 , IVHT
1.75, IVHT

2.25, RFE Yes
SUVT

peak, VolTPET, VolTCT, VolT0.5max
Local relapse T ∪N VolTCT, IVHN

2.5, IVHN
2.75, IVHN

3.25, RFE Yes
IVHN

3.5
Overall relapse T IVHT

0.5 RFE Yes
Overall relapse T ∪N VolN0.5max Spearman No

We also investigated the removal of correlated features
and the use of feature selection within each fold of CV. We
calculated the correlation matrix for all 37 features over the 25
examples and removed features that had a correlation greater
than 0.75 with another feature.

We then repeated this CV with a reshuffled dataset 100
times and subsequently generated a histogram of the frequency
each set of features was chosen. The feature set that had the
highest frequency was the final set of features recommended
based on this methodology and dataset. The best classifiers
were chosen based on their MCC value.

Confidence intervals were constructed using bootstrap
resampling methods. Hypothesis testing was conducted using
the same bootstrap resampling method.27 Classifiers were
ranked on their MCC value, but we also present their area
under the curve (AUC), sensitivity, and specificity values.

3. RESULTS
3.A. Feature composition of best classifiers

Table III shows the feature composition for each of the
best models, and Table IV shows the corresponding metrics
for the models from Table III. Figure 2 shows the histogram
of the top five features for local relapse. For local relapse, the
best classifier was composed of eight tumor features and had
a MCC of 0.07. For overall relapse, the best classifier was
composed of a single nodal feature and had a MCC of 0.29
(VolN0.5max).

3.B. The value of nodal information

Figure 3 shows the histogram of the top five features for
overall relapse. For local relapse, restricting the classifier to
only tumor features resulted in a better classifier; indeed, the

T classifier had a MCC of 0.07, while the T ∪N classifier
decreased to a MCC of−0.07 (p= 0). The AUC and sensitivity
also decreased when going from the best T classifier to the
best T ∪N classifier for local relapse. In contrast, for overall
relapse, allowing the classifier to consider nodal features
increased the MCC by roughly a factor of three, from 0.1
to 0.29 (p = 0). The AUC, sensitivity, and specificity also
increased.

4. DISCUSSION

For local relapse, the T classifier demonstrated a higher
MCC of 0.07 than the T ∪N classifier with a MCC of −0.07.
The T ∪N classifier had a negative MCC value, meaning
that it more often predicted the opposite of what the true
class was; in this case, it seems that adding nodal information
confounded the classifier. This could have been due to the
poor class imbalance for local relapse and the small number
of examples.

For overall relapse, we see that the T ∪N classifier
achieved a higher MCC (0.29) than the T classifier (0.10).
The top single T ∪N feature was chosen as VolN0.5max. Using
nodal information can significantly improve the classifier
when predicting overall relapse, which is consistent with
recent correlative studies that also confirm the prognostic
value of nodal SUV in NSCLC.28

When the classifier’s features were chosen using RFE, this
resulted in the best model for all classifiers except overall
relapse T ∪N classifier, which performed the best with the
Spearman-based approach. Also, the overall relapse T ∪N
classifier performed best, even when no correlated features
were removed during the preprocessing stage. Despite high
intervariable correlation, certain combinations of variables
can complement each other when used together.29 This may

T IV. Mean CV metrics and confidence intervals after 100 repetitions of CV for best classifiers.

Local relapse Overall relapse

T T ∪N T T ∪N

Num features 8 5 1 1
Mean MCC [CI] 0.07 [0.04, 0.11] −0.07 [−0.11, −0.04] 0.10 [0.06, 0.13] 0.29 [0.26, 0.32]
Mean AUC [CI] 0.55 [0.53, 0.58] 0.44 [0.41, 0.47] 0.52 [0.50, 0.53] 0.69 [0.68, 0.71]
Mean sensitivity [CI] 0.57 [0.53, 0.61] 0.34 [0.31, 0.38] 0.56 [0.53, 0.59] 0.57 [0.55, 0.59]
Mean specificity [CI] 0.52 [0.50, 0.53] 0.58 [0.56, 0.60] 0.48 [0.45, 0.52] 0.63 [0.60, 0.65]
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F. 2. Histogram of top five feature sets across 100 repetitions of CV for local relapse. Full label names are located in the Appendix (Tables V and VI).

explain why the overall relapse classifier performed the best
by including all the features.

The poor performance in predicting local relapse could also
be explained by the variability in defining of local relapse
or in-field failure.30 Also, all the patients who had a local
recurrence in our study were diagnosed with a recurrence only
based on imaging; no pathologic sampling was performed.
Using CT alone to diagnose recurrence can be inaccurate
due to the post-treatment effects and this phenomenon is well
established in the literature.31

4.A. Dataset

Our feature dataset was extracted from 4DPET/4DCT im-
ages. Respiratory motion causes the max and peak SUV to
decrease on 3DPET images, and the use of 4DPET alleviates
this motion blur to provide sharper images.32 Although 4DPET
is not standard-of-care, nor is it available at most institutions,
we suspect that the use of 4DPET features improved the quality
of our prediction over the use of 3DPET features alone. 4DCT
also helps with the accurate contouring of the mask. The inhale

and exhale phases of the PTV were contoured and the ITV was
generated from that. Most of our features were derived from
the ITV, which is the GTV plus some margin, so the margins
are large enough that we can be sure the features are robust to
the autocontouring process. The contours were also reviewed
afterward by a single expert to ensure consistency and that no
other organs were included in the ITV contours.

The patient population used in this study was composed of
25 patients, so we were limited to using cross-validation
methods to measure the effectiveness of our classifiers.
The results of this study should be validated on a larger
independent dataset to evaluate the effectiveness of the
classifiers and the relevance of the features selected.33

Our ongoing work is focused on quantifying the additional
benefit that 4DPET scans provide over 3DPET scans with
these machine learning methods. We are also studying the
change of 4DPET/4DCT features during treatment through
the use of serial imaging, and any improvements this could
bring to our models. Second-order image features such as
contrast, correlation, homogeneity, and entropy are also being
investigated.

F. 3. Histogram of top five features across 100 repetitions of CV for overall relapse.
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5. CONCLUSION

Our results showed that it is possible to predict local
relapse and overall relapse at the two-year time point. For
local relapse, the best classifier found through feature selection
methods was composed of eight tumor features. For overall
relapse, the best classifier found through feature selection
methods was composed of a single nodal feature: the volume
greater than 0.5 times the maximum SUV (N).

The results demonstrated that adding nodal features to
a classifier improved MCC for predicting overall relapse.
In addition, adding nodal features to a classifier did not
improve MCC for predicting local relapse. Future work will
explore higher order statistics and time trends in the hope of
identifying features to facilitate individualized care and help
improve outcomes for those patients.
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APPENDIX: FULL FEATURE SETS FOR LOCAL
RELAPSE

T V. Full list of features for the top five T feature sets for local relapse.

Rank Feature set

1 IVHT
0.75, IVHT

1 , IVHT
1.25, IVHT

1.75, SUVT , VolTPET, VolTCT, VolT0.5max

2 IVHT
0.5, IVHT

0.75, IVHT
1 , IVHT

1.25, SUVT
peak, VolTPET, VolTCT, VolT0.5max

3 IVHT
0.75, IVHT

1 , IVHT
1.25, IVHT

2.25, SUVT
peak, VolTPET, VolTCT, VolT0.5max

4 IVHT
0.5, IVHT

0.75, IVHT
1.75, IVHT

2.25, SUVT , SUVT
peak, VolTCT, VolT0.5max

5 IVHT
0.75, IVHT

1 , IVHT
1.75, IVHT

2.25, SUVT , SUVT
peak, VolTCT, VolT0.5max

T VI. Full list of features for the top five T ∪N feature sets for local
relapse.

Rank Feature set

1 IVHT
1 , IVHT

1.75, VolTCT, IVHN
2.5, IVHN

3.5

2 IVHT
0.5, IVHN

2.5, IVHN
2.75, IVHN

3.25, IVHN
3.5

3 IVHT
0.75, VolTCT, VolT0.5max, IVHN

2.5, IVHN
3.5

4 VolTCT, IVHN
2 , IVHN

2.5, IVHN
3.25, IVHN

3.5

5 VolT0.5max, IVHN
2.75, IVHN

3 , IVHN
3.25, IVHN

3.5
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