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Purpose: Functional image guided intensity-modulated radiation therapy has the potential to improve
cancer treatment quality by basing treatment parameters such as heterogeneous dose distributions
information derived from imaging. However, such heterogeneous dose distributions are subject to
imaging uncertainty. In this paper, the authors develop a robust optimization model to design plans
that are desensitized to imaging uncertainty.
Methods: Starting from the pretreatment fluorodeoxyglucose-positron emission tomography scans,
the authors use the raw voxel standard uptake values (SUVs) as input into a series of intermediate
functions to transform the SUV into a desired dose. The calculated desired doses were used as an
input into a robust optimization model to generate beamlet intensities. For each voxel, the authors
assume that the true SUV cannot be observed but instead resides in an interval centered on the
nominal (i.e., observed) SUV. Then the authors evaluated the nominal and robust solutions through
a simulation study. The simulation considered the effect of the true SUV being different from the
nominal SUV on the quality of the treatment plan. Treatment plans were compared on the metrics of
objective function value and tumor control probability (TCP).
Results: Computational results demonstrate the potential for improvements in tumor control prob-
ability and deviation from the desired dose distribution compared to a nonrobust model while
maintaining acceptable tissue dose.
Conclusions: Robust optimization can help design treatment plans that are more stable in the
presence of image value uncertainties. C 2015 American Association of Physicists in Medicine.
[http://dx.doi.org/10.1118/1.4926845]
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1. INTRODUCTION

Current clinical IMRT treatment planning is largely based on
computed tomography (CT) imaging, which provides geomet-
ric information about the tumor and surrounding organs-at-
risk (OARs). Treatment planning using CT imaging implicitly
assumes that the tumor is biologically homogeneous and aims
to deliver a uniform dose1 as this results in the optimal tumor
control probability (TCP).2,3

Functional imaging such as positron emission tomography
(PET) can provide insight into the heterogeneity of the tumor.4

This heterogeneity of the tumor requires a nonuniform dose
distribution in order to maximize TCP.5,3 Nonuniform dose
distributions are also being explored in a large multicenter
clinical trial (RTOG1106). How to best utilize PET informa-
tion to determine a heterogeneous dose distribution remains
an open question. A number of researchers have proposed a
tracer-independent linear relationship to transform the PET

signal from a biological image to a desired heterogeneous dose
distribution,1,6–9 but it has also been suggested that a linear
transformation may lead to unnecessary overestimations of
the desired dose.10 Yang and Xing11 calculated heterogeneous
dose distributions required to maximize TCP given voxel-
specific radiobiological parameters under the linear–quadratic
(LQ) model. South et al.12 developed a theoretical framework
to derive heterogeneous dose distributions based on functional
imaging. A follow-up study by South et al.13 applied this
theoretical framework to PET imaging using fluorodeoxyglu-
cose (FDG) as a tracer to ultimately describe a heterogeneous
distribution reflecting radiosensitivity. We follow a similar
framework as South et al.13 in this study to translate the PET
image map to a desired heterogeneous dose distribution.

Boellaard14 presents a comprehensive list of uncertainties
affecting PET images, including the patient’s blood glucose
level, patient motion, inflammation, uptake period, scan acqui-
sition parameters, image reconstruction parameters, region
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of interest, and blood glucose level correction. These uncer-
tainties, in turn, affect our understanding of the true biolog-
ical activity. Thus, any treatment planning paradigm that uses
PET imaging to derive a heterogeneous dose distribution must
consider the inherent uncertainty in the PET signal.

A few studies have considered incorporating uncertainty
into a biologically based treatment planning process. Kåver
et al.15 compared the use of stochastic optimization and mar-
gins on the biological parameters to maximize the expected
probability of uncomplicated treatment. Witte et al.16 ad-
dressed geometric uncertainties when using heterogeneous
dose distributions in a probabilistic optimization model, where
random and systematic (positional) errors were approximated
using isotropic Gaussian kernels.

Robust optimization methods form another class of
methods that aim to mitigate the effects of uncertainty in treat-
ment planning. Such methods have been applied to nonbio-
logical IMRT treatment planning for interfraction uncertainty
(e.g., setup error)17,18 and intrafraction uncertainty (e.g., tumor
motion).19–26 Robust optimization methods have also been
developed for intensity-modulated proton therapy.27–30

In this paper, we develop the first robust optimization
approach for PET-based treatment planning. We assume that
the PET signal represents tumor heterogeneity, thus requiring
a voxel-specific heterogeneous dose distribution. However,
uncertainty in the PET signal can affect the overall treatment
quality; if the true signal is higher than measured, we may be
underdosing the tumor and if it is lower than measured, we
may miss out on an opportunity for improved sparing. Our
approach accounts for uncertainty in the PET signal using a
cardinality-based robust optimization model.31 Our model is
based on dose and does not optimize TCP directly. TCP is
measured after the optimization models are solved. We apply
our framework to a clinical lung case with PET information
from Princess Margaret Cancer Centre in Toronto, Canada. We
do not explicitly consider the effect of motion blurring on the
dose-influence matrix, but the effects of motion on the PET
signal can be implicitly captured in our model.

2. METHODS AND MATERIALS

We assume that a voxel-specific standardized uptake value
(SUV) obtained from a FDG-PET image is used to generate a
heterogeneous desired dose. We aim to achieve this distribu-
tion using both nonrobust and robust optimization methods.
The two methods are then compared through a simulation
study considering changes in SUV.

FDG uptake is hypothesized to be affected by a number
of biological processes including radioresistance,32 prolifera-
tion,33 cell density,34 and hypoxia.35–37 Hotspots of FDG have
also been found to be associated with areas of recurrence,
which affects overall survival.32,38 The optimization model
we present is tracer-independent and only requires a voxel-
specific desired dose distribution. The relationship we assume
between FDG and desired dose is given in the Appendix. Note
that as long as the values of the tracer observed in the image
can be converted to a desired dose distribution, it can be used
in our framework.

2.A. Model of SUV uncertainty

We assume that the true SUV is not directly observed due
to uncertainty in the image.14 We define θi to be the nominal
(i.e., observed) SUV in voxel i of the PET image. The true
(i.e., unobserved) SUV for voxel i, θ̃i resides in an interval
Ui = [θi− θ̂i,θi+ θ̂i], where θ̂i is the maximum absolute devi-
ation from the nominal SUV for voxel i.

The values θi and θ̂i will be used to determine a dose
distribution for treatment planning. Since the true SUV is un-
known, the dose that should have been given may be different
from the nominal dose distribution, which is derived from
the observed SUV. Thus, if we design a treatment using the
nominal heterogeneous dose distribution, we may underdose
or overdose certain voxels with respect to the dose that should
have been given.

2.B. Mathematical formulation

We develop a robust optimization framework for treatment
planning in the presence of PET signal uncertainty based on
the “budget of protection” model described in Ref. 31. Our
goal is to demonstrate a proof of concept for the value of
robustness in the presence of PET signal uncertainty. As such,
we use a simple penalty-based linear model that approximates
a treatment planning formulation but omits many of the more
sophisticated features of clinical formulations for the sake of
simplicity.

Let i, j, and k index voxels, beamlets, and structures,
respectively. Let Ik be the set of all voxels in structure k, O be
the index set of all OARs, IT be the set of all tumor voxels, IO
be the set of all OAR voxels, and J be the set of all beamlets.
Let yi and z measure the underdose to voxel i and maximum
underdose to the clinical target volume (CTV), respectively.
Let w j be the intensity of beamlet j. Let Di j be the influence
matrix describing the dose from unit intensity of beamlet j to
voxel i. Let f (θi) be the desired dose to voxel i, given SUV
θi. Let Ui and Li be the upper and lower bounds on the dose
to voxel i, respectively. Let µk be an upper bound on the mean
dose to OAR k. We will refer to Formulation (1) as the nominal
(no uncertainty) model. A solution to this formulation is called
the nominal solution or nominal plan,

minimize
w, y,z

λ−

i∈IT

yi+λz+λO

i∈IO


j ∈J

Di jw j (1a)

subject to − yi ≤

j ∈J

Di jw j− f (θi), ∀i ∈ IT , (1b)

z ≥ yi, ∀i ∈ IT , (1c)

Li ≤

j ∈J

Di jw j ≤Ui, ∀i ∈ IO∪IT , (1d)

1
|Ik |


i∈Ik


j ∈J

Di j ≤ µk, ∀k ∈ O, (1e)

yi,w j ≥ 0, ∀i ∈ IT , j ∈ J . (1f)

Objective (1a) minimizes a weighted combination of the
total absolute deviation (underdose) from the voxel-specific
desired dose for all target voxels and the total dose to the

Medical Physics, Vol. 42, No. 8, August 2015



4865 Li et al.: Robust PET-guided intensity-modulated radiation therapy 4865

OARs. Parameters λ−,λ,λO are the weights for penalizing
underdose, maximum underdose, and OAR dose, respec-
tively. Constraint (1b) models the underdose computation.
Constraint (1c) models the maximum underdose computation.
Constraint (1d) bounds the upper and lower doses to every
OAR voxel. Constraint (1e) limits the mean dose for each
OAR. Since Formulation (1) assumes no uncertainty in the
underlying radiobiological parameters, a treatment that is able
to deliver at least the desired dose to all CTV voxels will
generate a voxel TCP of 0.999 99, according to our TCP model
in the Appendix.

The robust formulation accounts for SUV uncertainty and
builds on Formulation (1). First, let f (θ̃i) be the desired dose
for voxel i associated with the uncertain SUV θ̃i, which we
use in place of f (θi) in constraint (1b). Second, to facilitate the
comparison of our robust model with the nominal model, we
require the robust model to deliver a mean dose to the tumor
that is the same as what is delivered in the nominal model.
Thus, after solving the nominal model, we calculate the mean
tumor dose, which we define as Ω, and include a constraint
which holds the mean CTV dose delivered by the robust solu-
tion equal toΩ. This ensures an unbiased comparison between
different models because a simple boost dose to all voxels in
the tumor will result in an increase in TCP. By holding the
mean dose constant, we know that the improvement in TCP is
a result of the redistribution of dose rather than a boost dose.
Of course, a boost dose can be included to further improve
TCP if possible. These two changes to the nominal model are
implemented by eliminating constraint (1b) in Formulation (1)
and adding the following constraints:

− yi ≤

j ∈J

Di jw j− f (θ̃i), ∀θ̃i ∈Ui,i ∈ IT , (2a)

1
|IT |


i∈IT


j ∈J

Di jw j =Ω. (2b)

SinceUi is an interval, a formulation including constraint (2a)
is not directly solvable as a linear program. However, we can
easily reformulate it into a tractable linear program.

Our model assumes that each voxel’s SUV may deviate
from its nominal value; however, the total number of voxels
that will deviate (and conspire to produce a worst-case effect)
is bounded. We introduce a parameter γi ∈ [0,1] for each
constraint involvingUi to model the extent of the SUV change
of voxel i. For example, γi = 0 models the belief that voxel i
will remain at its nominal SUV θi and therefore only require
the corresponding nominal desired dose, while γi = 1 models
the belief that voxel i will realize its worst-case (largest) SUV
θi+ θ̂i and therefore require a higher dose to achieve the same
TCP. Formulation (3) shows the linear robust formulation. A
solution to this formulation is called the robust solution or
robust plan,

minimize
w, y,z

λ−

i∈IT

yi+λz+λO

i∈IO


j ∈J

Di jw j

subject to −

j ∈J

Di jw j+ f (θi)+γi � f (θi+ θ̂i)− f (θi)� ≤ yi,

∀i ∈ IT , z ≥ yi, ∀i ∈ IT ,

Li ≤

j ∈J

Di jw j ≤Ui, ∀i ∈ IO∪IT ,

1
|Ik |


i∈Ik


j ∈J

Di j ≤ µk, ∀k ∈ O,

1
|IT |


i∈IT


j ∈J

Di jw j =Ω,

yi,w j,≥ 0, ∀i ∈ IT , j ∈ J . (3)

If we allow γi to be decision variables that can be optimized
simultaneously with the beamlet intensities w j, the optimiza-
tion engine will chose values for γi in an optimistic (i.e., not
worst-case) manner. Instead, to ensure that Formulation (3)
is protecting against a worst-case realization of the SUV, we
formulate auxiliary optimization problem (4) that identifies
the worst-case combination of voxels to change SUV and
chooses the γi values accordingly within an overall budget of
Γ. Model (4) only considers the worst-case underdose as that
is more important in terms of TCP robustness,

maximize
γ


i∈IT

γi
�

f (θi+ θ̂i)− f (θi)�

subject to

i∈IT

γi ≤ Γ,

0 ≤ γi ≤ 1, ∀i ∈ IT . (4)

The value Γ can be interpreted as the maximum number of
voxels that we expect to change their SUV to their worst-case
values. Therefore, Γ need not be larger than ΓmaxB |IT | (the
number of tumor voxels). Choosing Γ = 0 forces all γi = 0,
and robust model (3) reduces to nominal model (1). Choosing
Γ = |IT | results in the most conservative model, where we
assume all tumor voxels can change their SUV to their worst-
case values. Given a particular Γ, auxiliary problem (4) is
solved first to find the optimal γ∗i values, which are then used
as input to Formulation (3). Note that Formulation (4) is an
instance of the continuous knapsack problem, for which it
is known that the greedy solution is optimal. That is, if the
values of f (θi+ θ̂i)− f (θi) are ranked in descending order, the
optimal solution is γ∗i = 1 for i = 1,. . .,⌊Γ⌋ and γ∗⌈Γ⌉ = Γ− ⌊Γ⌋
(in the case Γ is not integer). Hence, the effort required to solve
Formulation (4) is minimal. Overall, the parameter Γ provides
flexibility and allows a treatment planner to adjust his or her
level of conservatism when designing the robust treatment.

2.C. Patient data and optimization parameters

The exhale phase of a combined 4D FDG-PET/CT dataset
was exported into the computational environment for radio-
therapy research (CERR), in order to generate the dose influ-
ence matrices necessary for optimization.39 The 4D data alle-
viate blur due to respiratory motion. The SUV of each voxel
from the PET image was converted into a voxel-specific
desired dose distribution as described in the Appendix.

The penalty parameters were set as follows: λ−= 1000, λ
= 100 000, λO = 1. Mean and maximum dose constraints were
obtained from the QUANTEC series of papers40 and clinical
protocols at Princess Margaret Cancer Center (see Table II).
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For the target, we set an upper limit of 1.4× the desired dose
on each voxel.

For the robust formulation, we set Ω= 83.25 Gy, which is
the mean tumor dose of the solution to the nominal formula-
tion. We employed a coplanar equispaced 7-beam configura-
tion for the two optimization models. We assumed a beamlet
size of 1× 1 cm. The models were solved using CPLEX 12
on a remote computing cluster using a node with a 2.27 Ghz
Intel Xeon 10 core processor and 252 GB of RAM. All models
solved in under one min.

The original CT image had a resolution of 0.0977×0.0977
×0.2 cm. The original PET scan had a resolution of 0.3906
× 0.3906 × 0.3270 cm. The SUV of the PET voxels was
mapped to their closest corresponding voxel in the CT image.
Then the CT scan was downsampled to obtain a final planning
resolution of 0.3906×0.3906×0.2 cm. This resulted in 7,372
voxels in the CTV and 207 938 voxels in the OARs. Since the
desired dose distribution is generated to obtain a voxel TCP
of 0.999 99, a plan that is able to deliver at least the desired
dose to all CTV voxels will obtain an overall CTV TCP of
0.93 (0.999 997372).

2.D. Simulating SUV changes to evaluate
optimization results

Once we determine an optimal fluence map from the nomi-
nal and robust formulations, we evaluate the dosimetric conse-
quences of the realization of different SUVs. We present two
approaches to simulate SUV changes, depending on whether
the voxels are uncorrelated or correlated.

2.D.1. Uncorrelated voxels

The first simulation assumes that randomly chosen voxels
will realize their worst-case SUV (the maximum value θi+ θ̂i
in the interval). This will result in underdosing if we only pro-
vided the nominal dose to the voxels. Boellaard14 provides the
typical ranges and maximum effect of many factors that can
affect a PET signal, and although they may all affect the image,
some of their interactions may cancel out. In the absence of
more detailed data about the statistical distribution of each
factor’s effect, we set θ̂i to 0.6θi as a conservative estimate of
the worst-case effect. We simulated 2000 realizations for this
scenario, each representing a random set of voxels that realize
a change to their worst-case SUVs.

2.D.2. Correlated voxels

The second method to simulate SUV changes assumes that
voxels in close proximity will be correlated and thus their SUV
deviations will move together. We consider the CTV to be
composed of seven nested shells each of 4 mm thickness. We
assume the outermost shell will have the highest uncertainty
due to its proximity to neighboring nontarget structures. The
uncertainty decreases as we move from the outermost shell to
the innermost shell. Table I outlines the size of the uncertainty
half-interval (i.e., θ̂i) for each shell. We only considered voxels
potentially increasing in SUV. The simulation chooses all

T I. Size of the uncertainty half-interval for each shells in the correlated
voxels simulation. Shell 1 is the outermost shell and shell 7 is the innermost
shell.

Shell
1 2 3 4 5 6 7

Half-interval
size

0.3θi 0.25θi 0.2θi 0.15θi 0.1θi 0.05θi 0.05θi

voxels to realize a positive change from their nominal SUV,
thus representing a correlated effect. We investigate the effects
if all voxels realize a positive change to a fraction of their
maximum SUV within the specified range. Specifically, all
voxels will realize a SUV of θi+δθ̂i for various δ ∈ [0,1]. Note
that this experiment represents any source of uncertainty that
causes the voxel SUVs to move in the same direction.

3. RESULTS
3.A. Uncorrelated voxels

First, we consider the impact of uncertainty and protection
level Γ on the objective function values (i.e., a weighted mea-
sure of deviation from the desired dose distribution) and TCP.
Recall that Γ= 0 is equivalent to the nominal plan, while posi-
tive Γ values correspond to robust solutions. Figure 1 depict
histograms of the objective function and TCP values, where
the relative frequencies are generated from simulating random
sets of voxels to experience a change from their nominal SUV
to their worst-case value.

Figure 1 shows that the nominal plan generates worse
objective function values and has more variability in these
values, compared to the robust plans. A higher objective
function value means the delivered dose distribution deviates
more from the desired dose distribution. Increased spread in
the histogram means that the performance of the nominal plan
is much more variable in the presence of uncertainty. Note for
Γ > 0.4Γmax, the resulting histogram is essentially the same as
the one for Γ= 0.4Γmax. The results for TCP calculated on the
CTV are similar. The robust plans generally have higher TCP
values and less variability in TCP especially under the worst-
case uncertainty scenarios. Again, negligible gains in TCP are
realized when Γ is increased above 0.4Γmax.

Table II provides more granular results for the performance
of the nominal and robust plans with respect to OAR dose. Vx

is the fractional volume of the ROI that exceeds a dose of x Gy.
Max cm3 ≥ x Gy is the maximum volume in cubic centimeters
of the ROI that is allowed to exceed x Gy. The first row of the
table shows the DVH criteria currently used at The Princess
Margaret Cancer Center. The remaining rows show the DVH
values corresponding to the robust plans for varying levels
of Γ. We were able to design treatment plans that satisfied
the clinical limits using both the nominal and robust models,
although as expected the robust plans had slightly higher (but
still acceptable) lung dose.

Naturally, there is a trade-off between TCP and OAR spar-
ing. In Fig. 2, the x-axis shows the mean dose to the lung,
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F. 1. Comparison of realized objective function and TCP values between nominal and robust plans under worst-case SUV uncertainty. (a) Objective function
values and (b) TCP values.

while the y-axis shows the mean TCP value over all simulated
realizations. The dose to the lung only changes with the value
of Γ and not with each simulated realization of SUV (since
the simulated SUV changes only occur in the target). As
previously observed, there is an increase in minimum TCP and
decrease in variance as we increase the value of Γ. However,
the mean lung dose increases as well.

3.B. Correlated voxels

Figure 3 shows the results of the simulation for when all
the voxels realize a SUV of θi + δθ̂i for δ = 0.1,0.2,. . .,1.0.
We observe that the nominal solution performance worsens
with a much steeper slope in both objective function and TCP
values, while the robust solutions are much less sensitive to
the amount of SUV variation. Similar to the uncorrelated case,
there is a threshold above which increasing Γ does not further
improve robustness: approximately 0.6Γmax for the objective
function value and 0.2Γmax for TCP.

4. DISCUSSION

It is important to note that the robust model maintains the
same level of mean tumor dose as the nominal model. Simply
increasing the beamlet intensities from the nominal solution

by a uniform factor will lead to an improvement in TCP since
dose to the tumor will increase. However, this action will also
violate some of the maximum dose limits on the OARs. On the
other hand, our robust solution is able to obtain an improve-
ment in TCP through the intelligent redistribution of dose,
rather than a naïve increase of it. In practice, redistribution
of the dose should be done only if a desired minimum dose
can be maintained in the tumor. Ideally, a boost dose would
be given as well to maximize the benefit. We demonstrate the
use of a redistribution here simply to have a fair comparison
between the robust and nominal solutions. Even with this
redistribution, the minimum dose in the CTV was at least 97%
of the minimum desired dose (corresponding to SUV of 0).
Overall, the redistribution was fairly modest—taking a small
amount of dose from many colder voxels to give to fewer hot
voxels—but still yielded a nontrivial improvement in TCP. It
is important to maintain a certain minimum dose level to the
target, especially when dose may be redistributed away from
voxels that may actually be “hotter” than they appear on the
image. Also, although all OAR dose/QUANTEC limits are
met for all robust solutions, a more difficult case may require
the relaxation of some constraints or a penalized objective on
normal tissue dose.

Figure 2 shows that while increasing Γ (the conservatism
of the robust solution) improves TCP, the marginal returns are

T II. Computed DVH metrics over varying Γ values. The italicized row indicates the clinical limits.

Lung Esophagus Spinal canal Heart

Mean (Gy) V5 V10 V20 V40 Max (Gy) Max (Gy) V40 cc ≥ 75 Gy

Clinical req. 18 0.5 0.4 0.3 0.6 65 50 0.6 2
0Γmax 7.62 0.21 0.16 0.11 0.31 65.00 50.00 0.01 0.00
0.1Γmax 7.78 0.21 0.16 0.12 0.32 65.00 50.00 0.01 0.00
0.2Γmax 8.32 0.25 0.18 0.12 0.32 65.00 50.00 0.01 0.00
0.3Γmax 8.55 0.26 0.19 0.13 0.37 65.00 50.00 0.01 0.00
0.4Γmax 8.84 0.28 0.21 0.13 0.33 65.00 50.00 0.01 0.00
0.5Γmax 8.90 0.28 0.21 0.14 0.34 65.00 50.00 0.01 0.00
0.6Γmax 8.90 0.28 0.21 0.14 0.34 65.00 50.00 0.01 00.00
0.7Γmax 8.90 0.28 0.21 0.14 0.34 65.00 50.00 0.01 0.00
0.8Γmax 8.90 0.28 0.21 0.14 0.34 65.00 50.00 0.01 0.00
0.9Γmax 8.90 0.28 0.21 0.14 0.34 65.00 50.00 0.01 0.00
Γmax 8.90 0.28 0.21 0.14 0.34 65.00 50.00 0.01 0.00
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F. 2. The trade-off between mean TCP and mean lung dose. The circle is
the mean TCP value, and the upper and lower bars represent the maximum
and minimum values of the realized TCP, respectively.

diminishing. Thus, we get the most increase in TCP relative
to the increase in OAR dose from a small Γ value. Recall that
histograms of the objective function value and TCP did not
change for values of Γ greater than 0.4Γmax in the uncorrelated
voxel scenarios. One does not need to formulate a very conser-
vative treatment in order to derive most of the benefit of robust-
ness. In other words, choosing a modest value for the protec-
tion parameter Γmay provide most of the benefit of protecting
against every possible voxel changing its SUV, possibly to
worst-case values. This is a promising result because it means
that we may be able to achieve improved robustness without
giving up too much in terms of healthy tissue dose. This type of
robustness result is common in the literature, where accounting
for a modest amount of uncertainty is sufficient to change
the structure of the robust solution so that other uncertain
scenarios are now also protected against (e.g., Ref. 20).

There is another reason why accounting for a modest
amount of robustness seems to provide most of the protection
of a fully conservative solution, specific to the models in this
paper. The reason is because the solution to the auxiliary
problem essentially ranks the voxels in decreasing order of
worst-case deviation from the nominal SUV and selects voxels
to protect in that order. Therefore, larger values of Γ will
include the protection of voxels that deviate less and less from

their nominal SUV. Another byproduct of the current approach
is that we are essentially protecting against the “hottest”
voxels. Because of our assumption in the uncorrelated case
that the size of the uncertainty half-interval is an increasing
function of nominal SUV, the rank-ordering induced by the
auxiliary problem can be viewed as not only a rank-ordering
of the voxels with the largest potential deviation from their
nominal SUV but also of the voxels with large observed SUV.
Thus, our results can also speak to the potential of a much
simpler intervention that does not depend on the particular
formulation and SUV-to-dose conversion function: boosting
the dose to the hottest voxels, at the expense of the coolest
ones, while maintaining mean target dose constant to ensure
a fair comparison. Subsequent boosting of the entire dose
distribution to ensure a consistent minimum target dose may
highlight further gains achievable by the robust model, but at
the expense of increased OAR dose.

It is important to emphasize that the Γ thresholds observed
in this paper may not be generalizable to every patient. The
purpose of this paper is to develop a framework that is gener-
alizable and not to determine a general value of Γ. The value
of such an optimization framework is to provide the decision
maker with flexibility to tailor a robust solution for the partic-
ular patient at hand. Note that an appropriate value of Γ will
depend on the size of the uncertainty set. Future research could
examine using this framework to identify certain “classes” of
patients with similar characteristics that can utilize a similar
value of Γ.

Many robust optimization approaches exist in the IMRT
and IMPT literatures that are conceptually similar to our
approach in that they construct a model for the underlying
uncertain phenomenon and incorporate this model into the
optimization. All of these approaches have the common goal
of desensitizing the resulting solution (i.e., fluence map) to the
uncertainty. One distinguishing feature of the approach in this
paper is our use of Γ to model a budget of uncertainty in an
auxiliary problem, whose optimal solution is provided as input
into the primary model. Though such a robust model has been
applied in other domains, this is the first application of such a
model in radiation therapy optimization.

Since the CTV adds a margin around the gross tumor volume
(GTV), it includes part of the non-PET avid region due to

F. 3. Fraction of worst-case uncertainty under simulation of the correlated voxels case: (a) objective function value and (b) TCP.
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the presumed low clonogen density expected in microscopic
disease. As a result, some CTV voxels have a very low nominal
SUV that even if doubled would have no effect on the desired
doseaccordingtotheconversionfunctionsintheAppendix.The
robustmodelprioritizesvoxelswithahighSUV,sothelowSUV
voxels are only taken into account at higher Γ values. Thus, we
seeverylittlechangeintheTCPhistogramsathigherΓvalues. If
the conversion function from SUV to desired dose was smooth,
instead of having the thresholding seen in the Appendix, we
would see more of a change in the objective function value and
TCPhistogramsathighervaluesofΓ.Nevertheless, thechanges
would still be marginally decreasing with increasing Γ.

In this study we did not consider the accumulation of the
delivered dose in the presence of respiratory motion or posi-
tional errors. However, in principle, our robust model could
be modified to account for these errors given the availability
of 4D PET/CT, which helps alleviate motion blur. Our frame-
work addresses uncertainty in general and can accept any
noise scenario as input into the model. The specific SUV-
to-dose conversion function that we use, which is outlined
in the Appendix, was developed based on several studies in
the literature. There is much active research ongoing in this
area and future work should consider the robustness of our
optimization approach to different calibration functions, as
new experimental evidence is uncovered. Overall, we believe
that our robust approach and model of uncertainty can sup-
port future work in robust functional image guided treatment
planning optimization.

5. CONCLUSION

In this paper, we present the first robust optimization model
for functional image guided IMRT, aimed at mitigating the
effects of uncertainty in the PET signal. In our model, we
assume voxels in the CTV have a nominal SUV from which
they can deviate. Our model uses a simplified treatment plan-
ning formulation that gives the treatment planner an adjust-
able parameter that can be used to adjust the conservatism of
the resulting solution. Our framework can accommodate any
biological tracer once their values are converted to dose. Our
experimental results, based on an assumed nonlinear SUV-to-
dose conversion function, show that robust plans can exhibit
not only improved objective function and TCP values but also
reduced variance of these values compared to the nominal
plan. Aligned with results observed in other robust optimi-
zation studies, our results suggest that setting the protection
parameter to a modest value may provide most of the benefit
of robustness without the higher healthy tissue dose character-
istic of more conservative solutions.
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APPENDIX: THEORETICAL RADIOBIOLOGICAL
FRAMEWORK

The following theoretical framework, based on several
models in the literature,13 generates a heterogeneous desired
dose distribution from PET SUVs and allows us to evaluate
our model’s performance. This is not meant to represent a
clinically validated function to map PET values to dose. Of
course, should such a relationship be discovered in the future,
our framework would be readily able to accept the “true”
conversion function. Note that the optimization model only
requires the dose distribution and does not depend on any
biological function.

To generate the desired dose for each voxel, we start with
an observed SUV, convert it to a normalized biological feature,
generate the α,β parameters of the LQ model of cell kill,
and finally compute the voxel-specific desired dose needed to
achieve a certain TCP.

1. Radiobiological modeling

We calculate the tumor control probability of voxel i, TCPi,
according to the LQ model.2,11,13,41 TCPi is given by

TCPi = exp

−ρiViexp*

,
−αidi− βi

d2
i

r
+

log2
Tp

(T −Tk)+
-


.

(A1)

Parameters αi and βi are the linear and quadratic coeffi-
cients of the LQ model for voxel i, respectively. Parameter
Tp is potential cell doubling time in days, T is the overall
treatment time, Tk is the number of days until repopulation
begins, ρi is the number of clonogens per cm3 in voxel i, Vi

is the volume of voxel i, r is the number of fractions, and di is
the total dose to a voxel i. The TCP for the CTV is calculated
as the product of TCPi for each voxel i in the CTV.

2. Conversion from SUV to voxel-specific
desired dose

While the true function to convert FDG SUV to a desired
dose is unknown, we will assume a particular functional form
for the purposes of model evaluation. The optimization is
independent of the dose function; it only assumes that a dose
can be calculated given the SUV. The dose distribution will be
derived to maximize the TCP under the LQ model.

We will assume that the normalized biological feature in
this case is oxygenation. Following South et al.,13 we assume
that the PET signal is negatively correlated to oxygenation.
First, we convert SUV θi, to oxygenation p(θi), according to
the following equation:

p(θi)=min


max

φ1exp

(
φ2

θi

)
,pmin


,pmax


. (A2)

Parameters pmin and pmax were chosen to be 1 and 100, respec-
tively. The function p(θi) is shown in Fig. 4(a). We chose
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F. 4. Conversion functions: (a) SUV to oxygen; (b) oxygen to radiosensitivity parameters; (c) linear–quadratic model parameters to desired dose; and (d) SUV
to desired dose.

parameters φ1 and φ2 to fit the overall relationship between
SUV and dose so that at a SUV of 2.5, the dose would be
approximately 67 Gy and at a SUV of 20, the dose would be
approximately 105 Gy [see Fig. 4(d)]. The values chosen for
φ1, φ2 were 1 and 14, respectively. A SUV of 2.5 was used
because it is a commonly used threshold for tumor delinea-
tion.42 We recognize that a simple threshold for delineation
has a number of issues regarding variability. While normal-
ized SUV (N-SUV) is an approach that attempts to reduce
potential variations in the measurement, such as varying blood
glucose levels,43 precautions have been taken preemptively
to avoid effects in our imaging protocol (i.e., patient fasting,
controlled blood glucose levels). It should also be noted that a
number of SUV thresholds have been validated with surgical
samples.44,45

For each voxel i, we convert partial oxygen pressure into
the factors, Ai and Bi, which modify the intrinsic radiosensi-
tivity parameters, αi and βi, respectively,46,47 according to the
following equations:

Ai =

(
1

OERαmax

)  (piOERαmax+Km)
pi+Km


, (A3)

Bi =

(
1

OERβmax

)2  (piOERβmax+Km)
pi+Km

2

. (A4)

Parameters OERαmax and OERβmax are the maximum oxy-
gen enhancement ratios (OERs) for α and β, respectively.10

Parameter Km is the partial oxygen pressure at which half-
maximum sensitization is reached and pi is the partial oxygen
pressure for voxel i. To derive voxel-specific radiosensitivity

parameters αi and βi, the intrinsic parameters, α and β, are
then multiplied by their respective Ai and Bi: αi = Aiα and
βi = Bi β. Figure 4(b) shows the relationship between oxygen-
ation and the LQ parameters.

The modified radiosensitivity parameters determine a
voxel-specific dose that results in a specified TCP, according to
the method described by Yang and Xing.11 Figure 4(c) shows
the conversion from the LQ parameters to a voxel-specific
dose that results in a voxel TCP of 0.999 99. Figure 4(d)
summarizes all the steps into a single plot, showing the rela-
tionship between the input SUV and output dose.

For this study, the intrinsic radiobiological parameters for
the lung tumor were set as follows:13,48,49 ρ= 107 clonogens/
cm3, α = 0.35 Gy−1, β = 0.035, α

β
= 10, Tp = 3 days (equiv-

alent to a cell proliferation rate of 0.1386 days−1), OERαmax

= 2.5, OERβmax = 3, Km = 3.28, Tk = 28 days. Partial oxygen
pressure for a voxel was assumed to be bounded within the
range of p ∈ [1,100] mmHg.13 The treatment plan parameters
were set as follows: T = 44 days, r = 32 fractions.

a)Author to whom correspondence should be addressed. Electronic mail:
heyse.li@mail.utoronto.ca

1B. Vanderstraeten, W. De Gersem, W. Duthoy, W. De Neve, and H. Thierens,
“Implementation of biologically conformal radiation therapy (BCRT) in
an algorithmic segmentation-based inverse planning approach,” Phys. Med.
Biol. 51, N277–N286 (2006).

2S. Webb and A. E. Nahum, “A model for calculating tumour control proba-
bility in radiotherapy including the effects of inhomogeneous distributions
of dose and clonogenic cell density,” Phys. Med. Biol. 38, 653–666 (1999).

3D. Levin-Plotnik and R. J. Hamilton, “Optimization of tumour control prob-
ability for heterogeneous tumours in fractionated radiotherapy treatment
protocols,” Phys. Med. Biol. 49, 407–424 (2004).

Medical Physics, Vol. 42, No. 8, August 2015

mailto:heyse.li@mail.utoronto.ca
mailto:heyse.li@mail.utoronto.ca
mailto:heyse.li@mail.utoronto.ca
mailto:heyse.li@mail.utoronto.ca
mailto:heyse.li@mail.utoronto.ca
mailto:heyse.li@mail.utoronto.ca
mailto:heyse.li@mail.utoronto.ca
mailto:heyse.li@mail.utoronto.ca
mailto:heyse.li@mail.utoronto.ca
mailto:heyse.li@mail.utoronto.ca
mailto:heyse.li@mail.utoronto.ca
mailto:heyse.li@mail.utoronto.ca
mailto:heyse.li@mail.utoronto.ca
mailto:heyse.li@mail.utoronto.ca
mailto:heyse.li@mail.utoronto.ca
mailto:heyse.li@mail.utoronto.ca
mailto:heyse.li@mail.utoronto.ca
mailto:heyse.li@mail.utoronto.ca
mailto:heyse.li@mail.utoronto.ca
mailto:heyse.li@mail.utoronto.ca
mailto:heyse.li@mail.utoronto.ca
mailto:heyse.li@mail.utoronto.ca
mailto:heyse.li@mail.utoronto.ca
mailto:heyse.li@mail.utoronto.ca
mailto:heyse.li@mail.utoronto.ca
http://dx.doi.org/10.1088/0031-9155/51/16/N02
http://dx.doi.org/10.1088/0031-9155/51/16/N02
http://dx.doi.org/10.1088/0031-9155/38/6/001
http://dx.doi.org/10.1088/0031-9155/49/3/005


4871 Li et al.: Robust PET-guided intensity-modulated radiation therapy 4871

4C. C. Ling, J. Humm, S. Larson, H. Amols, Z. Fuks, S. Leibel, and J. A.
Koutcher, “Towards multidimensional radiotherapy (MD-CRT): Biological
imaging and biological conformality,” Int. J. Radiat. Oncol., Biol., Phys. 47,
551–560 (2000).

5A. Brahme and A. K. Argren, “Optimal dose distribution for eradication of
heterogeneous tumors,” Acta Oncol. 26, 377–385 (1987).

6L. Xing, C. Cotrutz, S. Hunjan, A. L. Boyer, E. Adalsteinsson, and D. Spiel-
man, “Inverse planning for functional image-guided intensity-modulated
radiation therapy,” Phys. Med. Biol. 47, 3567–3578 (2002).

7M. Alber, F. Paulsen, S. M. Eschmann, and H. J. Machulla, “On biologically
conformal boost dose optimization,” Phys. Med. Biol. 48, N31–N35 (2003).

8S. K. Das et al., “Feasibility of optimizing the dose distribution in lung tu-
mors using fluorine-18-fluorodeoxyglucose positron emission tomography
and single photon emission computed tomography guided dose prescrip-
tions,” Med. Phys. 31, 1452–1461 (2004).

9B. Vanderstraeten, W. Duthoy, W. De Gersem, W. De Neve, and H. Thierens,
“[18F] fluoro-deoxy-glucose positron emission tomography ([18F] FDG-
PET) voxel intensity-based intensity-modulated radiation therapy (IMRT)
for head and neck cancer,” Radiother. Oncol. 79, 249–258 (2006).
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